for all integers & = 2. Then, a level-k fuzzy set A is defined by

ny: PN =10, 1], (2.47)
2.2.2 Further Operations on Fuzzy Sets

As we have mentioned, the standard operations, that is, negation, min, and max operations
in Egs. (2.24), (2.25), and (2.27), respectively, are not the only possible generalization of
the crisp set complement, intersection, and union operations. This raises a question con-
ceming the requirements, specifications, and properties of other functions that can be
viewed as a generalization of the crisp set operations. We shall first discuss several differ-
ent classes of functions for each of the above three standard set operators. These functions
will possess appropriate properties. For each operation, the corresponding functions can be
divided into two categories. One is nonparametric functions such as Egs. (2.24), (2.25), and
(2.27), and the other is parametric functions in which parameters are used to adjust the
“strength™ of the corresponding operations. Based on these functions, we will introduce
other kinds of fuzzy set operations. Let us consider the fuzzy complement first.
A complement of a fuzzy set A, denoted as A, is specified by a function

c: [0, 11— [0, 1], (2.48)
such that

Bz () = c(uy (), (2.49)

where the function ¢ (-) satisfies the following conditions:

cl. Boundary conditions: ¢ (0) =1 and ¢ ( I)=0.

¢2. Monotonic property: For any X, % €U, I py (x) <y, (x,), then ¢ (g () =
c(py (x,)); thatis, ¢ (+) is monotonic nonincreasing.

¢3. Continuity: ¢ () is a continuous function.

cd. Involution: c () is involutive, which means that

cle(uy(0)))=p, @), VxeU. (2.50)

Based on the above conditions, typical examples of nonparametric and parametric
fuzzy complements are

1. Negation complement: The complement of A using this operation is denoted as A and
is defined as in Eq. (2.24), that is,

Pz =c(u, (x) 21 — 1y () VxeU. (2.51)
2. X\ Complement (Sugeno class): This complement is denoted as A ™ and is defined by

1 - Mg (x)

-l <A< oo, 2.52
I+ A, ()’ (2:52)

v () =c(p, (x)) 2
\ 1S a parameter that gives the degree of complementation. When A = 0, the func-
tion becomes cpy@)=1-pn 4 (X), the standard fuzzy complement, and as A ap-
proaches -1, A* approaches the universal set U. When A approaches infinity, A*
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approaches the empty set. It j
DeMorgan’s laws [Egs. (2.35
3. w Complement (¥

§ noted that the double-negation law (Eq. (2.34)] and
: ) and (2.36)] hold for the A-complement.
ager class): This complement is denoted as A ™ and is defined by

Pt =l () & (L= )Y, <y < oo, (2.53)
Again. the par
plement functi

The equi

For example.

ameter w adjusts the degree of complementation. When w = 1. the w-com-
on becomes the standard fuzzy complement of ¢ (By))=1-p, (0.
librium of a fuzzy complement c is defined as any value a for which ¢ (@)y=a,

: the equilibrium of the standard complement operation is 0.5, which is the
solution of the equation 1 — a = ¢, Ap mportant property sh

is that every fuzzy complement has at most one equilibriu
creasing nature of fuzzy complements.

ared by all fuzzy complements
m due to the monotonic nonin-

Next. let us discuss the intersection and union operations of fuzzy sets, which are
often referred to as triangular norms (t-norms

) and triangular conorms ( t-conorms). respec-
tively [Dubois and Prade. 1980, 1985b]. -

norms are two-parameter functions of the form
t: [0, 11 X [0, 11— [0, 1], (2.54)
such that

Rang (x)=1 [H'A (x), Kg (x) 1. (2.35)
where the function ¢ (-, -) satisfies the following conditions:

t1. Boundary conditions: t (0, 0) = 0; t(py ), D) =1(1, py )= By ().

t2. Commutativity: (e, (X)), g (0) =1(ng ), Ky (X))

t3. Monotonicity: If Ky (X)) = pe (x) and Bp(x) = pp(x), then t(py (), ppx)) =
e (), pp (). -

td. Associativiry: t (PLA x), ¢ (PJB x), o (x)))=1t( (“‘A =), Kp(x)), M (X)) .

The r-norms and t-conorms are also used to define other operations. Typical nonparametric

t-norms are [to simplify the notation, we use a = . 4 (X) and b = ., (x) for the remainder of
this section only]:

{
1. Intersection: a A b = min (q, b) .

(2.56)
2. Algebraic product: a - b = ab. (2.57)
3. Boundéd product: a© b = max (0,a + b — 1). ‘ (2.58)
a, b=1], ,
4. Drasticproduct: a ® b =4b, a=1, (2.59)
0, ab<l.

’

One representative parametric t-norm is the Yager intersection which is defined by the function

t (a.b)=1—=min[l, ((1 =" + (1 - b)")/*], (2.60)
where w € (0, co) . For w = 1, the Yager intersection becomes the bounded product of Eq.
(2.58). It can be shown that when w—co, t, (a, b) = min (a, b), and when w— (), t,.(a b)

becomes the drastic product [Klir and Folger, 1988). That is, the Yager intersection becomes *
the min operator when w— 0. It is observed that the membership grade increases as w
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increases. Hence. the parameter w can be interpreted as the degree of strength of In

tersec-

. . f) <)
tion performed. Some other classes of parametric -norms aie shown in Table 2.5.
. c
t-conorms (also called s-norms) are two-parameter functions of the form

such that

s: [0, 1] <

Faup(x) =

F
- [0.1]—[0. 1]. (2.61)
s{pa(x), ppx)]- (2.62)

where the function s(-, -) satisfies the following conditions:

sl. Boundary conditions: s(1. 1) = 1, s(j4(x), 0) = 5(0, ps(x)) = palx).
s2. Conmumutativity: s(p(x), pg(x)) = s(pg(x), palx)).

s3. Monotonicity: If  py(x) = pc(x) and pplx) = p.p(x),

S(Rc(x), pp(x)).

then s(p (x), wpx) =

s4. Associativity: s(p(x), s(pgx), o)) = s(s(ra(x), pp(x), pclx)).

Based on the above conditions, typical nonparametric f-conorms are

1. Union: a vV b = max (a, b).

. 2. Algebraicsum:a X b=a+ b — ab.

(2.63)
(2.64)

TABLE 2.3 Some Parameterized t-Norms (Fuzzy Intersections) and t Conorms (Fuzzy Unions), where
a=p, (x) and b= p, ().

References rnorms (Fuzzy Intersections) t conorms (Fuzzy Unions) Range
Schweizer and -l . oL
Slda\:e[llzggf; max{0,a”+b"—1} ° 1-max{0, (1-a)" + (1=b)" —1} r€ (re, )
b a+b— (2—v)ab

Hamacher [1978 — -2 . € (0, e

amacher [ ] v+ (1—v)(a+b—ab) 1-(1—-+v)ab WS CE

. b __ l=a _ 1=b__
Frank [1979)] log, [1 p A2 ] 1-log, [1 e ] SE (0, %)
S S—
" 1 s , |
Yager [1980] 1-min{l, 1=a*+ 1 =6} min{l, @ +s)~} WE (0, co)
Dubois and Prade ab a+b—ab—min{a, b, 1 - a} « €, 1)
[1980] max{a, b, o} max{l —a,1—b,a} '
b\ )= N -\ -4
’ 1 1 A 1 1 A
N R | R ) G N T
(1—B)(a+b 1— +b

Wemers (19881 8 min{a. b} + —L—B)f——) B max{a, b} + -(—B),,(aﬁ) BE([O 1]
Zimmermannand (@)Y 1= (1—-a) (1= 7 parameter indicates compensation YE[0.1)
Zysno [1980]

between intersection and union
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3. Bounded sum: a® b =min (l,a + D). (2.65)

a, b=0,

4. Drasticsum: a V b= 1. a=0. (2.66)
ke a,b>0.

5. Disjoint sum: a A b = max{ min (a. 1 — &), min (1 — a, b)} (2.67)

One typical parametric t-conorm is the Yager union which is defined by the function
5, (@ b)=min[l, (@ + '], (2.63)

where w € (0, c0) . For w = 1, the Yager union becomes the bounded sum of Eq. (2.65). We*
can show that when w— o, s, (a, b) = max (a, b), and when w— 0, 5, (a, b) becomes the’
drastic sum [Klir and Folger, 1988]. It is observed that the membership grade decreases as

w increases. Some other classes of parametric z-conorms are also shown in Table 2.3.
The relations among various t-norms (fuzzy intersections) and t-conorms (fuzzy

unions) are characterized by the following theorem.

Theorem 2.2
Let A and B be fuzzy sets in the universe of discourse U. The t-norms [Egs. (2.56)—(2.59)] are

bounded by the inequalities

tap (@, B) = typ (a,b) =t(a, b) =t,,,(a, b) = min(a, b), (2.69)
where 14, (a, b) is the drastic product in Eq. (2.59). Similarly, the z-conorms [Egs. (2.63)>
(2.67)] are bounded by the inequalities

max (a, b) = s, (a, b) = 5(a, b) = 5. (a, b) = s54(a, b), (2.70)
where 54 (a, b) is the drastic sum in Eq. (2.66).

Proof: Since the proof of Eq. (2.70) is similar to that of Eq. (2.69), we shall prove only
Eq. (2.69). Using the boundary condition of the -norm, we have t(a, 1) =a and #(1,5)=>.
Then by the monotonicity condition of the r-norm, we obtain

tab)<t(a1)=a and t(a,b)=1(l,b)=b.

Hence, we conclude that '

t(a,b)=min(a,b),
which is the second inequality in Eq. (2.69). For the first inequality in Eq. (2.69), when b=1,
t(a, b) = a,and when a = 1, ¢ (a, b) = b (boundary conditions). Hence, the first inequality holds

whena = 1orb= 1. Since t(a, b) €[0, 1], it follows from the second inequality in Eq. (2.69)
that ¢ (a, 0) = ¢ (0, b) = 0. By the monotonicity condition, we have

t(a, b)=1(0, b) = t(a,0) =0,

which completes the proof of the first inequality in Eq. (2.69).

Hence, the standard min and max operations are, respectively, the upper bound of ¢-norms
(the weakest intersection) and the lower bound of t-conorms (the strongest union). As men-
tioned before, the Yager intersection [Eq. (2.60)] and the Yager union [Eq. (2.68)] become
the standard min and max operations, respectively, as w— co, and become the ¢ . and s

operations, respectively, as w— 0. Hence, the Yager class of fuzzy intersectionsn;r;ld unién:;

26 Basics of Fuzzy Sets Chap. 2
4
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